Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Adv Healthc Mater ; : e2303312, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478847

RESUMO

Physiologically-relevant in vitro skin models hold the utmost importance for efficacy assessments of pharmaceutical and cosmeceutical formulations, offering valuable alternatives to animal testing. Here, an advanced immunocompetent 3D bioprinted human skin model is presented to assess skin sensitization. Initially, a photopolymerizable bioink is formulated using silk fibroin methacrylate, gelatin methacrylate, and photoactivated human platelet releasate. The developed bioink shows desirable physicochemical and rheological attributes for microextrusion bioprinting. The tunable physical and mechanical properties of bioink are modulated through variable photocuring time for optimization. Thereafter, the bioink is utilized to 3D bioprint "sandwich type" skin construct where an artificial basement membrane supports a biomimetic epidermal layer on one side and a printed pre-vascularized dermal layer on the other side within a transwell system. The printed construct is further cultured in the air-liquid interface for maturation. Immunofluorescence staining demonstrated a differentiated keratinocyte layer and dermal extracellular matrix (ECM)-remodeling by fibroblasts and endothelial cells. The biochemical estimations and gene-expression analysis validate the maturation of the printed model. The incorporation of macrophages further enhances the physiological relevance of the model. This model effectively classifies skin irritative and non-irritative substances, thus establishing itself as a suitable pre-clinical screening platform for sensitization tests.

2.
ACS Appl Bio Mater ; 7(3): 1910-1924, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38391158

RESUMO

Creating polymers that combine various functions within a single system expands the potential applications of such polymeric materials. However, achieving polymer materials that possess simultaneously elevated strength, toughness, and self-healing capabilities, along with special properties, remains a significant challenge. The present study demonstrates the preparation of S and Mo codoped graphitic carbon nitride (g-C3N4) (Mo@S-CN) nanohybrid and the fabrication of self-healing waterborne polyurethane (SHWPU)/Mo@S-CN (SHWPU/NS) nanocomposites for advanced applications. Mo@S-CN is an intriguing combination of g-C3N4 nanosheets and molybdenum oxide (MoOx) nanorods, forming a complex lamellar structure. This unique arrangement significantly improves the inborn properties of SHWPU to an impressive degree, especially mechanical strength (28.37-34.11 MPa), fracture toughness (73.65-140.98 MJ m-2), and thermal stability (340.17-348.01 °C), and introduces fluorescence activity into the matrix. Interestingly, a representative SHWPU/NS0.5 film is so tough that a dumbbell of 15 kg, which is 53,003 times heavier than the weight of the film, can be successfully lifted without any significant crack. Remarkably, fluorescence activity is developed because of electronic excitations occurring within the repeating polymeric tris-triazine units of the Mo@S-CN nanohybrid. This fascinating feature was effectively harnessed by assessing the usability of aqueous dispersions of the Mo@S-CN nanohybrid and photoluminescent SHWPU/NS nanocomposites as sustainable stains for bioimaging of human dermal fibroblast cells and anticounterfeiting materials, respectively. The in vitro fluorescence tagging test showed blue emission from 365 nm excitation, green emission from 470 nm excitation, and red emission from 545 nm excitation. Most importantly, in vitro hemocompatibility assessment, in vitro cytocompatibility, cell proliferation assessment, and cellular morphology assessment supported the biocompatibility nature of the Mo@S-CN nanohybrid and SHWPU/NS nanocomposites. Thus, these materials can be used for advanced applications including bioimaging.


Assuntos
Grafite , Nanocompostos , Compostos de Nitrogênio , Poliuretanos , Humanos , Proliferação de Células , Eletrônica , Nanocompostos/toxicidade , Polímeros
3.
Adv Biol (Weinh) ; : e2300710, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38402426

RESUMO

Meniscus tears in the avascular region undergoing partial or full meniscectomy lead to knee osteoarthritis and concurrent lifestyle hindrances in the young and aged alike. Here they reported ingenious photo-polymerizable autologous growth factor loaded 3D printed scaffolds to potentially treat meniscal defects . A shear-thinning photo-crosslinkable silk fibroin methacrylate-gelatin methacrylate-polyethylene glycol dimethacrylate biomaterial-ink is formulated and loaded with freeze-dried growth factor rich plasma (GFRP) . The biomaterial-ink exhibits optimal rheological properties and shape fidelity for 3D printing. Initial evaluation revealed that the 3D printed scaffolds mimic mechanical characteristics of meniscus, possess favourable porosity and swelling characteristics, and demonstrate sustained GFRP release. GFRP laden 3D scaffolds are screened with human neo-natal stem cells in vitro and biomaterial-ink comprising of 25 mg mL-1 of GFRP (GFRP25) is found to be amicable for meniscus tissue engineering. GFRP25 ink demonstrated rigorous rheological compliance, and printed constructs demonstrated long term degradability (>6 weeks), GFRP release (>5 weeks), and mechanical durability (3 weeks). GFRP25 scaffolds aided in proliferation of seeded human neo-natal stem cellsand their meniscus-specific fibrochondrogenic differentiation . GFRP25 constructs show amenable inflammatory response in vitro and in vivo. GFRP25 biomaterial-ink and printed GFRP25 scaffolds could be potential patient-specific treatment modalities for meniscal defects.

4.
ACS Biomater Sci Eng ; 10(2): 1090-1105, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38275123

RESUMO

Nonhealing diabetic wounds are often associated with significant mortality and cause economic and clinical burdens to the healthcare system. Herein, a biomimetic hydroscaffold is developed using omentum tissue-derived decellularized-extracellular matrix (dECM) and silk fibroin (SF) proteins that associate the behavior of a collagenous fibrous scaffold and a hydrogel to reproduce all aspects of the provisional skin tissue matrix. The chemical cross-linker-free in situ gelation property of the two types of SF proteins from Bombyx mori and Antheraea assamensis ensures the adherence of dECM with surrounding tissue on the wound bed, circumventing further suturing. The physicochemical and mechanical properties of the composite hydroscaffold (SF-dECM) were thoroughly evaluated. The hydroscaffolds were found to support the growth and proliferation of human dermal fibroblasts and influence the angiogenic potential of endothelial cells under in vitro conditions. Furthermore, the healing efficacy of the composites was evaluated by generating full-thickness wounds on a streptozotocin-induced diabetic rat model. The presence of dECM components in the composite facilitated the rate of wound closure, granulation tissue formation, and re-epithelialization by providing intrinsic cues to advance the inflammatory stage and stimulating angiogenesis. Collectively, as an off-the-shelf wound dressing requiring only a single topical administration, the SF-dECM hydroscaffold is a promising, cost-effective dressing for the management of chronic diabetic wounds.


Assuntos
Diabetes Mellitus , Fibroínas , Ratos , Animais , Humanos , Fibroínas/farmacologia , Fibroínas/uso terapêutico , Células Endoteliais , Omento , Cicatrização , Matriz Extracelular/metabolismo , Diabetes Mellitus/metabolismo , Neovascularização Patológica/metabolismo
5.
Biofabrication ; 16(2)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38277686

RESUMO

The knee meniscus is the cushioning fibro-cartilage tissue present in between the femoral condyles and tibial plateau of the knee joint. It is largely avascular in nature and suffers from a wide range of tears and injuries caused by accidents, trauma, active lifestyle of the populace and old age of individuals. Healing of the meniscus is especially difficult due to its avascularity and hence requires invasive arthroscopic approaches such as surgical resection, suturing or implantation. Though various tissue engineering approaches are proposed for the treatment of meniscus tears, three-dimensional (3D) printing/bioprinting, injectable hydrogels and physical stimulation involving modalities are gaining forefront in the past decade. A plethora of new printing approaches such as direct light photopolymerization and volumetric printing, injectable biomaterials loaded with growth factors and physical stimulation such as low-intensity ultrasound approaches are being added to the treatment portfolio along with the contemporary tear mitigation measures. This review discusses on the necessary design considerations, approaches for 3D modeling and design practices for meniscal tear treatments within the scope of tissue engineering and regeneration. Also, the suitable materials, cell sources, growth factors, fixation and lubrication strategies, mechanical stimulation approaches, 3D printing strategies and injectable hydrogels for meniscal tear management have been elaborated. We have also summarized potential technologies and the potential framework that could be the herald of the future of meniscus tissue engineering and repair approaches.


Assuntos
Traumatismos do Joelho , Menisco , Humanos , Hidrogéis , Traumatismos do Joelho/cirurgia , Cartilagem , Impressão Tridimensional , Engenharia Tecidual/métodos
6.
ACS Appl Mater Interfaces ; 16(4): 5183-5195, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38235678

RESUMO

A new conductive and transparent organohydrogel is developed with high stretchability, excellent mechanical, self-healing, antifreezing, and adhesive properties. A simple one-pot polymerization method is used to create polyacrylamide cross-linked through N,N'-methylenebis(acrylamide) (MBAA) and divinylbenzene (DVB). The dual chemical cross-linked gel network is complemented by several physical cross-links via hydrogen bonding and π-π interaction. Multiple chemical and physical cross-links are used to construct the gel network that allows toughness (171 kPa), low modulus (≈45 kPa), excellent stretchability (>1100%), and self-healing ability. The use of appropriate proportions of the water/glycerol binary solvent system ensures efficient environment tolerance (-20 to 40 °C). Phytic acid is used as a conductive filler that provides excellent conductivity and contributes to the physical cross-linking. Dopamine is incorporated in the gel matrix, which endows excellent adhesive property of the gel. The organohydrogel-based strain sensors are developed with state-independent properties, highly linear dependence, and excellent antifatigue performance (>100 cycles). Moreover, during the practical wearable sensing tests, human motions can be detected, including speaking, smiling, and joint movement. Additionally, the sensor is biocompatible, indicating the potential applications for the next generation of epidermal sensors.


Assuntos
Acrilamida , Dopamina , Humanos , Condutividade Elétrica , Epiderme , Excipientes , Hidrogéis
7.
J Mater Chem B ; 11(43): 10297-10331, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37905467

RESUMO

To recapitulate bio-physical properties and functional behaviour of native heart tissues, recent tissue engineering-based approaches are focused on developing smart/stimuli-responsive materials for interfacing cardiac cells. Overcoming the drawbacks of the traditionally used biomaterials, these smart materials portray outstanding mechanical and conductive properties while promoting cell-cell interaction and cell-matrix transduction cues in such excitable tissues. To date, a large number of stimuli-responsive materials have been employed for interfacing cardiac tissues alone or in combination with natural/synthetic materials for cardiac tissue engineering. However, their comprehensive classification and a comparative analysis of the role played by these materials in regulating cardiac cell behaviour and in vivo metabolism are much less discussed. In an attempt to cover the recent advances in fabricating stimuli-responsive biomaterials for engineering cardiac tissues, this review details the role of these materials in modulating cardiomyocyte behaviour, functionality and surrounding matrix properties. Furthermore, concerns and challenges regarding the clinical translation of these materials and the possibility of using such materials for the fabrication of bio-actuators and bioelectronic devices are discussed.


Assuntos
Polímeros Responsivos a Estímulos , Engenharia Tecidual , Materiais Biocompatíveis , Miócitos Cardíacos
8.
ACS Appl Bio Mater ; 6(7): 2771-2784, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37414749

RESUMO

The synthesis of eco-friendly and biocompatible waterborne polyurethanes (WPUs) through judicious molecular engineering with supreme mechanical strength, good shape recoverability, and high self-healing efficiency is still a formidable challenge because of some mutually exclusive conflicts among these properties. Herein, we report a facile method to develop a transparent (80.57-91.48%), self-healable (efficiency 67-76%) WPU elastomer (strain 3297-6356%) with the highest reported mechanical toughness (436.1 MJ m-3), ultrahigh fracture energy (126.54 kJ m-2), and good shape recovery (95% within 40 s at 70 °C in water). These results were accomplished by introducing high-density hindered urea-based hydrogen bonds, an asymmetric alicyclic architecture (isophorone diisocyanate-isophorone diamine), and the glycerol ester of citric acid (a bio-based internal emulsifier) into the hard domains of the WPU. Most importantly, platelet adhesion activity, lactate dehydrogenase activity, and erythrocyte or red blood corpuscle lysis demonstrated the hemocompatibility of the developed elastomer. Simultaneously, the cellular viability (live/dead) assay and the cell proliferation (Alamar blue) assay of human dermal fibroblasts corroborated the biocompatibility under in vitro conditions. Furthermore, the synthesized WPUs showed melt re-processability with retention of mechanical strength (86.94%) and microbe-assisted biodegradation. The overall results, therefore, indicate that the developed WPU elastomer might be used as a potential smart biomaterial and coating for biomedical devices.


Assuntos
Elastômeros , Poliuretanos , Humanos , Poliuretanos/química , Materiais Biocompatíveis/química , Água/química
9.
Acta Biomater ; 168: 650-669, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451660

RESUMO

Iron-manganese (Fe-Mn) based degradable biomaterials have been proven as a suitable substitute to permanent internal fracture-fixation devices. However, lower degradation and bacterial infection are still major concerns. To overcome these limitations, in this work, we have incorporated copper (Cu) in Fe-Mn system. The objective is to produce Cu nano-precipitates and refined microstructure through suitable combination of cold-rolling and age-treatment, so that degradation is improved eventually. High resolution transmission electron microscope (TEM) and scanning transmission electron microscope (STEM) confirmed the Cu rich composition of the nano-precipitates. Number of precipitates increased as aging time increased. Three-dimensional visualization of Fe, Mn and Cu atomic distributions using atom probe tomography (APT), indicated that Cu precipitates were in 15-50 nm range. Large number of nano-precipitates along with lower dislocation density led to highest strength (1078 MPa) and ductility (37 %) for the 6 h age-treated sample. On the other hand, nano-precipitates and refined microstructure resulted highest degradation for the 12 h of age treated sample (0.091 mmpy). When E.Coli bacteria was cultured with the sample extract, significantly higher antibacterial efficacy was observed for the sample having higher nano-precipitates. Higher degradation rate did not cause cyto-toxicity, rather promoted statistically higher cell proliferation (1.5 times within 24 h) in in vitro cell-material interaction studies. In vivo biocompatibility of the alloy containing large nano-precipitates was confirmed from higher new bone regeneration (60%) in rabbit femur model. Overall study suggested that the optimization of the thermo-mechanical processes can effectively tailor the Fe-Mn-Cu alloys for successful internal fracture fixation. STATEMENT OF SIGNIFICANCE: In the present work, we have reported a noble thermo-mechanical approach to simultaneously achieve Cu nano-precipitates and grain refinement in Fe-20Mn-3Cu alloy.


Assuntos
Ligas , Ferro , Animais , Coelhos , Ligas/farmacologia , Ligas/química , Ferro/química , Fenômenos Mecânicos , Cobre/farmacologia , Cobre/química , Antibacterianos/farmacologia , Antibacterianos/química
10.
ACS Omega ; 8(19): 16907-16926, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37214732

RESUMO

The multifold Sonogashira coupling of a class of aryl halides with arylacetylene in the presence of an equivalent of Cs2CO3 has been accomplished using a combination of Pd(CH3CN)2Cl2 (0.5 mol %) and cataCXium A (1 mol %) under copper-free and amine-free conditions in a readily available green solvent at room temperature. The protocol was used to transform several aryl halides and alkynes to the corresponding coupled products in good to excellent yields. The rate-determining step is likely to involve the oxidative addition of Ar-X. The green protocol provides access to various valuable polycyclic aromatic hydrocarbons (PAHs) with exciting photophysical properties. Among them, six tetraalkynylated anthracenes have been tested for their anticancer properties on the human triple-negative breast cancer (TNBC) cell line MDA-MB-231 and human dermal fibroblasts (HDFs). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to find out the IC50 concentration and lethal dose. The compounds being intrinsically fluorescent, their cellular localization was checked by live cell fluorescence imaging. 4',6-Diamidino-2-phenylindole (DAPI) and propidium iodide (PI) staining was performed to check apoptosis and necrosis, respectively. All of these studies have shown that anthracene and its derivatives can induce cell death via DNA damage and apoptosis.

11.
Adv Mater ; 35(31): e2302264, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37229615

RESUMO

The release of chemicals following either pulsatile or continuous release modes is important for various potential applications, including programmed chemical reactions, mechanical actuation, and treatments of various diseases. However, the simultaneous application of both modes in a single material system has been challenging. Here, two chemical loading methods are reported in a liquid-crystal-infused porous surface (LCIPS) that enables both a pulsatile and continuous release of chemicals simultaneously. Specifically, chemicals loaded in the porous substrate exhibit a liquid crystal (LC) mesophase-dependent continuous release, whereas the chemicals dissolved in micrometer-sized aqueous droplets dispersed in the LC surface follow a pulsatile release activated by a phase transition. Moreover, the loading method of distinct molecules can be controlled to program their release mode. Finally, the pulsatile and continuous release of two distinct bioactive small molecules, tetracycline and dexamethasone, are demonstrated which display antibacterial and immunomodulatory activities for applications such as chronic wound healing and biomedical implant coating.


Assuntos
Cristais Líquidos , Cristais Líquidos/química , Antibacterianos/farmacologia , Tetraciclina , Transição de Fase , Água/química
12.
ACS Biomater Sci Eng ; 9(5): 2438-2451, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37023465

RESUMO

Developing a scaffold for culturing human corneal endothelial (HCE) cells is crucial as an alternative cell therapeutic approach to bridge the growing gap between the demand and availability of healthy donor corneas for transplantation. Silk films are promising substrates for the culture of these cells; however, their tensile strength is several-fold greater than the native basement membrane which can possibly influence the dynamics of cell-matrix interaction and the extracellular matrix (ECM) secreted by the cells in long-term culture. In our current study, we assessed the secretion of ECM and the expression of integrins by the HCE cells on Philosamia ricini (PR) and Antheraea assamensis (AA) silk films and fibronectin-collagen (FNC)-coated plastic dishes to understand the cell-ECM interaction in long-term culture. The expression of ECM proteins (collagens 1, 4, 8, and 12, laminin, and fibronectin) on silk was comparable to that on the native tissue. The thicknesses of collagen 8 and laminin at 30 days on both PR (4.78 ± 0.55 and 5.53 ± 0.51 µm, respectively) and AA (4.66 ± 0.72 and 5.71 ± 0.61 µm, respectively) were comparable with those of the native tissue (4.4 ± 0.63 and 5.28 ± 0.72 µm, respectively). The integrin expression by the cells on the silk films was also comparable to that on the native tissue, except for α3 whose fluorescence intensity was significantly higher on PR (p ≤ 0.01) and AA (p ≤ 0.001), compared to that on the native tissue. This study shows that the higher tensile strength of the silk films does not alter the ECM secretion or cell phenotype in long-term culture, confirming the suitability of using this material for engineering the HCE cells for transplantation.


Assuntos
Fibroínas , Humanos , Integrinas , Fibronectinas , Laminina , Células Endoteliais , Matriz Extracelular , Colágeno , Seda
13.
Biomater Adv ; 145: 213224, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36516618

RESUMO

A single system capable of delivering anticancer drugs and growth factors by a minimally invasive approach is in demand for effective treatment of triple-negative breast cancer (TNBC) after lumpectomy. Here, we showcase one such holistic system for TNBC therapy and its assessment via 3D in vitro lumpectomy model, a first of its kind. Firstly, Bombyx mori silk fibroin (BMSF) and Antheraea assamensis silk fibroin (AASF) blended hydrogels were prepared and biophysically characterized. Secondly, a 3D in vitro lumpectomy model was developed using MDA-MB-231 cell line to assess the efficacy of localized delivery of doxorubicin (dox) using injectable hydrogel system in terminating remaining breast cancer after lumpectomy. Additionally, we have also evaluated the adipose tissue regeneration in the lumpectomy region by delivering dexamethasone (dex) using injectable hydrogels. Rheological studies showed that the BMSF/AASF blended hydrogels exhibit viscoelasticity and injectability conducive for minimally invasive application. The developed hydrogels by virtue of its slow and sustained release of dox exerted cytotoxicity towards MDA-MB-231 cells assessed through in vitro studies. Further, dex loaded hydrogel supported adipogenic differentiation of adipose tissue derived stem cells (ADSCs), while the secreted factors were found to aid in vascularization and macrophage polarization. This was confirmed through in vitro angiogenic tube formation assay and macrophage polarization study respectively. The corroborated results vouch for potential application of this injectable hydrogels for localized anticancer drug delivery and aiding in breast reconstruction, post lumpectomy.


Assuntos
Antineoplásicos , Bombyx , Fibroínas , Mariposas , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Seda , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Hidrogéis , Mastectomia Segmentar , Recidiva Local de Neoplasia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico
14.
Biomater Adv ; 145: 213223, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36502549

RESUMO

Biomaterials composed of silk fibroin from both mulberry and non-mulberry silkworm varieties have been investigated for their utility in tissue engineering and drug delivery, but these studies have largely excluded any evaluation of host immune response. The present study compares the macrophage activation response towards mulberry (Bombyx mori, BM) and non-mulberry (Antheraea assamensis, AA) silk types, individually and as a blend (BA) in a partial thickness rat abdominal wall defect model and in vitro primary murine bone marrow-derived macrophage (BMDM) assay. Biologic materials composed of liver extracellular matrix (LECM) and small intestinal submucosa (SIS) ECM that are recognized for constructive tissue remodeling, and polypropylene mesh that is associated with pro-inflammatory macrophage phenotype activation are used as controls in the animal model. The AA silk graft shows a host response similar to SIS with few foreign body multinucleate giant cells, vascularization, high CD206 expression, and high M2-like: M1-like macrophage phenotype ratio. Exposure to AA silk degradation products in vitro induces a higher arginase: iNOS ratio in both naive BMDM and pro-inflammatory activated BMDM; and higher Fizz1: iNOS ratio in pro-inflammatory activated BMDM. These data suggest that the AA silk supports a pro-remodeling macrophage response with potential therapeutic applications.


Assuntos
Bombyx , Fibroínas , Mariposas , Animais , Camundongos , Ratos , Bombyx/metabolismo , Ativação de Macrófagos , Seda/metabolismo , Mariposas/metabolismo
15.
Sci Adv ; 8(41): eabo6043, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36223455

RESUMO

Spider silks are among the toughest known materials and thus provide models for renewable, biodegradable, and sustainable biopolymers. However, the entirety of their diversity still remains elusive, and silks that exceed the performance limits of industrial fibers are constantly being found. We obtained transcriptome assemblies from 1098 species of spiders to comprehensively catalog silk gene sequences and measured the mechanical, thermal, structural, and hydration properties of the dragline silks of 446 species. The combination of these silk protein genotype-phenotype data revealed essential contributions of multicomponent structures with major ampullate spidroin 1 to 3 paralogs in high-performance dragline silks and numerous amino acid motifs contributing to each of the measured properties. We hope that our global sampling, comprehensive testing, integrated analysis, and open data will provide a solid starting point for future biomaterial designs.

16.
17.
ACS Biomater Sci Eng ; 8(9): 3856-3870, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35969223

RESUMO

Millions of people around the globe are affected by full-thickness skin injuries. A delay in the healing of such injuries can lead to the formation of chronic wounds, posing several clinical and economic challenges. Current strategies for wound care aim for skin regeneration and not merely skin repair or faster wound closure. The present study aimed to develop a bioactive wound-healing matrix comprising natural biomaterial silk fibroin (SF), clinical-grade human fibrin (FIB), and human hyaluronic acid (HA), resulting in SFFIBHA for regeneration of full-thickness burn wounds. A porous, hemostatic, self-adhesive, moisture-retentive, and biomimetic scaffold that promotes healing was the expected outcome. The study validated a terminal sterilization method, suggesting the stability and translational potential of the novel scaffold. Also, the study demonstrated the regenerative abilities of scaffolds using in vitro cell culture experiments and in vivo full-thickness burn wounds of critical size (4 cm × 4 cm) in a rabbit model. Under in vitro conditions, the scaffold enhanced primary dermal fibroblast adhesion and cell proliferation with regulated extracellular matrix (ECM) synthesis. In vivo, the scaffolds promoted healing with mature epithelium coverage involving intact basal cells, superficial keratinocytes, multilayers of keratohyalin, dermal regeneration with angiogenesis, and deposition of remodeled ECM in 28 days. The relative gene expression of the IL6 marker indicated transitions from inflammation to proliferation stage. In addition, we observed skin appendages and rete peg development in the SFFIBHA-treated wound tissues. Although wound closure was observed, neither negative (untreated/sham) nor positive (commercially available product; NeuSkin) control wounds developed skin appendages/rete pegs or native skin architecture. After 56 days, healing with organized ECM production enabled the recovery of mechanical properties of skin with higher tissue maturity in SFFIBHA-treated wounds. Thus, in a single application, the SFFIBHA scaffold proved to be an efficient biomimetic matrix that can guide burn wound regeneration. The developed matrix is a suture-less, hemostatic, off-the-shelf product for potential wound regenerative applications.


Assuntos
Queimaduras , Fibroínas , Hemostáticos , Animais , Queimaduras/terapia , Fibroínas/farmacologia , Hemostasia , Temperatura Alta , Humanos , Coelhos , Cicatrização
18.
Adv Healthc Mater ; 11(24): e2200209, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35670084

RESUMO

3D bioprinting of osteochondral tissue offers unique opportunities for enabling precise pharmacological interventions in osteoarthritis (OA). The current study investigates the screening potential of anti-inflammatory drugs using bioprinted inflamed human osteochondral units. The biomimetic hierarchical geometry is bioprinted using silk-based bioinks encapsulating pre-differentiated stem cells, creating an in vitro model. Inflammation is stimulated in the model, using tumor necrosis factor-alpha and Interleukin-1 beta pro-inflammatory cytokines. The resultant degeneration, akin to OA, is flagged by key markers like sulfated glycosaminoglycan, collagen, alkaline phosphatase, and downregulation of osteochondral transcript levels. In the next step, the screening of anti-inflammatory drugs is validated using celecoxib and rhein. Consequently, in the inflamed constructs, the initial upregulation of the key inflammatory mediators (nitric oxide, Prostaglandin E2), is subsequently downregulated, post-drug treatment. In addition, catabolic markers (matrix metalloproteinases and aggrecanase-1), indicative of hypertrophic and apoptosing chondrocytes, are significantly downregulated in the treatment groups; while the transcript and protein levels required for osteochondral health are attenuated. Therefore, the in vitro model mimicks the inflammation in the early stages of OA, and corroborates a potential high-throughput platform for screening novel anti-inflammatory drugs in OA therapeutics.


Assuntos
Osteoartrite , Seda , Humanos , Seda/metabolismo , Osteoartrite/tratamento farmacológico , Condrócitos/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Interleucina-1beta/metabolismo
19.
ACS Biomater Sci Eng ; 8(6): 2654-2663, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35616246

RESUMO

Effective hemorrhage control is indispensable for life-threatening emergencies in defense fields and civilian trauma. During major injuries, hemostatic agents are applied externally to mimic and accelerate the natural hemostasis process. Commercially available topical hemostatic agents are associated with several limitations, e.g., burning sensation, necrosis, futile in severe injuries, and high costs of the products. In the present study, we developed silk fibroin fiber-based formulations and evaluated their use as a cost-effective potential hemostatic agent with shortened clotting time. Silk fiber-based powder was produced following the alkaline hydrolysis process, wherein Bombyx mori silk fibroin fibers were treated with sodium hydroxide (NaOH) solution that randomly chopped the silk microfibers. Physicochemical reaction parameters, e.g., reaction temperature, molarity of NaOH solution, and incubation time, were optimized to achieve the maximum yield of microfibers. The surface properties of alkaline hydrolyzed silk microfibers (AHSMf) were analyzed by field emission scanning electron microscopy and energy dispersive X-ray studies. The water uptake capacity of AHSMf and the change in pH and temperature (∼30 °C) during blood clotting were analyzed. Further, the hemostatic potential of AHSMf was evaluated by an in vitro whole blood clotting assay using both goat and human blood. The in vitro studies demonstrated a reduced blood clotting time (CT = 20-30 s), prothrombin time (PT = ∼27%), and activated partial thromboplastin time (APTT = ∼14%) in the presence of AHSMf when compared to silk hydrogel powder (devoid of NaOH). Thus, the developed AHSMf could be a promising material to serve as a potential hemostatic agent.


Assuntos
Fibroínas , Hemostáticos , Fibroínas/química , Fibroínas/farmacologia , Hemostáticos/química , Hemostáticos/farmacologia , Pós , Seda/química , Hidróxido de Sódio
20.
ACS Biomater Sci Eng ; 8(5): 2000-2015, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35452211

RESUMO

The utility of plant tissues as scaffolding materials has been gaining significant interest in recent years owing to their unique material characteristics that are ideal for tissue regeneration. In this study, the degradation and biocompatibility of natural cellulosic scaffolds derived from Borassus flabellifer (Linn.) (BF) immature endosperm was improved by chemical oxidation and surface functionalization processes. Briefly, thus obtained cellulosic scaffolds were sequentially processed via a detergent exchange decellularization process followed by sodium periodate mediated oxidation and organosilane-based surface modification using amino (NH2)-terminated 3-aminopropyltriethoxysilane (APTES) and methyl (CH3)-terminated octadecyltrichlorosilane (OTS). Post oxidation and surface functionalization, the scaffolds showed improved physiochemical, morphological, and mechanical properties. Especially, the swelling capacity, total porosity, surface area, degradation kinetics, and mechanical behavior of scaffold were significantly higher in modified scaffold groups. The biocompatibility analysis demonstrated excellent cellular adhesion, proliferation and differentiation of osteoblasts with an evident upregulation of mineralization. Subcutaneous implantation of these scaffolds in a rat model demonstrated active angiogenesis, enhanced degradation, and excellent biocompatibility with concomitant deposition of a collagen matrix. Taken together, the native cellulosic scaffolds post chemical oxidation and surface functionalization can exclusively integrate the potential properties of native soft tissue with ameliorated in vitro and in vivo support in bone tissue engineering for nonloading bearing applications.


Assuntos
Compostos de Organossilício , Tecidos Suporte , Animais , Regeneração Óssea , Celulose/farmacologia , Ratos , Engenharia Tecidual , Tecidos Suporte/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...